lunes, 25 de julio de 2011

Motores y Variadores de Frecuencia


MOTORES

Motor de corriente continua

El motor de corriente continua convierte la energía eléctrica en mecánica, principalmente mediante el movimiento rotativo. En la actualidad existen nuevas aplicaciones con motores eléctricos que no producen movimiento rotatorio, sino que con algunas modificaciones, ejercen tracción sobre un riel. Estos motores se conocen como motores lineales. Su fácil control de posición, par y velocidad la convirtieron en una de las mejores opciones en aplicaciones de control y automatización de procesos. Pero con la llegada de la electrónica han caído en desuso pues los motores de corriente alterna pueden ser controlados de igual forma, a precios más accesibles para el consumidor medio de la industria. A pesar de esto el uso de motores de corriente continua continúa y se usan en muchas aplicaciones de potencia (trenes y tranvías) o de precisión (máquinas, micromotores, etc.)

La principal característica del motor de corriente continua es la posibilidad de regular la velocidad desde cero RPM a plena carga.

Un motor de corriente continua se compone principalmente de dos partes, un estator que da soporte mecánico al aparato y tiene un hueco en el centro de forma cilíndrica. En el estator además se encuentran los polos, que pueden ser de imanes permanentes o devanados con hilo de cobre sobre núcleo de hierro. El rotor es generalmente de forma cilíndrica, también devanado y con núcleo, al que llega la corriente mediante dos escobillas. También se construyen motores de CC con el rotor de imanes permanentes para aplicaciones especiales.

Fuerza contraelectromotriz inducida en un motor

Es la tensión que se crea en los conductores de un motor como consecuencia del corte de las líneas de fuerza, es el efecto generador. La polaridad de la tensión en los generadores es inversa a la aplicada en bornes del motor.

Las fuertes puntas de corriente de un motor en el arranque son debidas a que con máquina parada no hay fuerza contraelectromotriz y el bobinado se comporta como una resistencia pura.

Número de escobillas

Las escobillas deben poner en cortocircuito todas las bobinas situadas en la zona neutra. Si la máquina tiene dos polos, tenemos también dos zonas neutras En consecuencia, el número total de escobillas ha de ser igual al número de polos de la máquina. En cuanto a su posición, será coincidente con las líneas neutras de los polos.

Sentido de giro

El sentido de giro de un motor de corriente continua depende del sentido relativo de las corrientes circulantes por los devanados inductor e inducido. La inversión del sentido de giro del motor de corriente continua se consigue invirtiendo el sentido del campo magnético o de la corriente del inducido. Si se cambia la polaridad en ambos bobinados, el eje del motor gira en el mismo sentido. Los cambios de polaridad de los bobinados, tanto en el inductor como en el inducido se realizarán en la caja de bornes del motor.

Reversibilidad

Los motores y los generadores de corriente continua están constituidos esencialmente por los mismos elementos, diferenciándose únicamente en la forma de utilización.

Por reversibilidad entre el motor y el generador se entiende que si se hace girar al rotor, se produce en el devanado inducido una fuerza electromotriz capaz de transformarse en energía en el circuito de carga.

En cambio, si se aplica una tensión continua al devanado inducido del generador a través del colector de delgas, el comportamiento de la máquina ahora es de motor, capaz de transformar la fuerza contraelectromotriz en energía mecánica. En ambos casos el inducido está sometido a la acción del campo inductor principal.

Motores eléctricos a Corriente Alterna (CA)

Hay dos tipos de motores eléctricos a corriente alterna, el motor síncrono y el motor de inducción. Cada uno de estos tipos puede usar corriente monofásica o trifásica. En aplicaciones industriales, los motores trifásicos son los más comunes, debido a su mayor eficiencia respecto a los motores monofásicos. El motor síncrono es mucho menos generalizado que el motor a inducción, pero se usa en unas aplicaciones especiales, que requieren una velocidad absolutamente constante o factor de potencia. Los motores a inducción y los motores síncronos son similares en muchos aspectos pero tienen algunos detalles diferentes.

El estator del motor CA contiene un número de bobinas de alambre enrollado alrededor y a través de las ranuras del estator. Siempre hay más ranuras que bobinas y por eso las bobinas son trenzadas de manera bastante compleja. Cuando las bobinas se ponen bajo corriente, se genera un campo magnético rotativo a dentro del estator. La velocidad de rotación depende del número de bobinas, o del número de polos. En un motor trifásico, tres bobinas formarán 2 polos magnéticos debido a la acción de las corrientes que tienen una diferencia de fase de 120 grados entre ellos. Con una frecuencia de línea de 60 Hz, y dos polos en el estator el ritmo de rotación del campo será de 60 por segundo o 3600 RPM. Si hay 4 polos (6 bobinas) el campo girará a 1800 RPM y etc.

Los imanes de barras tienen polos Norte y Sur. Cuando se les deja girar, el polo Norte indicará el Norte, ya que los polos opuestos se atraen, por consecuencia el polo Norte de la tierra es en realidad un polo Sur magnético Campo Magnético Rotativo.

Motor síncrono

Los motores síncronos son un tipo de motor eléctrico de corriente alterna. Su velocidad de giro es constante y viene determinada por la frecuencia de la tensión de la red a la que esté conectado y por el número de pares de polos del motor, siendo conocida esa velocidad como "velocidad de sincronismo".

La expresión matemática que relaciona la velocidad de la máquina con los parámetros mencionados es:

n = 60*f/p

Donde:
• f: Frecuencia de la red a la que está conectada la máquina (Hz)
• p: Número de pares de polos que tiene la máquina (número adimensional)
• n: Velocidad de sincronismo de la máquina (revoluciones por minuto)
Por ejemplo, si se tiene una máquina de cuatro polos (2 pares de polos) conectada a una red de 50 Hz, la máquina operará a 1500 r.p.m.

Motor asíncrono

Los motores asíncronos o de inducción son un tipo de motores eléctricos de corriente alterna. El motor asíncrono trifásico está formado por un rotor y un estator en el que se encuentran las bobinas inductoras. Estas bobinas son trifásicas y están desfasadas entre sí 120º. Cuando por estas bobinas circula un sistema de corrientes trifásicas, se induce un campo magnético giratorio que envuelve al rotor.

Este campo magnético variable va a inducir una tensión en el rotor según la Ley de inducción de Faraday.

Entonces se da la Ley Lorentz: todo conductor por el que circula una corriente eléctrica, inmerso en un campo magnético experimenta una fuerza que lo tiende a poner en movimiento. Simultáneamente se da el efecto Faraday (ó efecto generador): en todo conductor que se mueva en el seno de un campo magnético se induce una tensión.

El rotor puede ser de dos tipos, de jaula de ardilla o bobinado. El campo magnético giratorio gira a una velocidad denominada de sincronismo. Sin embargo el rotor gira algo más despacio, a una velocidad parecida a la de sincronismo. El hecho de que el rotor gire más despacio que el campo magnético originado por el estator, se debe a que si el rotor girase a la velocidad de sincronismo, esto es, a la misma velocidad que el campo magnético giratorio, el campo magnético dejaría de ser variable con respecto al rotor, con lo que no aparecería ninguna corriente inducida en el rotor, y por consiguiente no aparecería un par de fuerzas que lo impulsaran a moverse.

Conceptos básicos de los motores de inducción

La velocidad de rotación esta dada por:

nsinc = 120*fe/P

Donde fe es la frecuencia del sistema en Hz, Y P es el número de polos en la
máquina.

El voltaje inducido en cierta barra de rotor está dado por


Donde
v : Velocidad de la barra en relación con el campo magnético
B : Vector de densidad de flujo magnético
l : Longitud del conductor en el campo magnético

Lo que produce el voltaje inducido en la barra del rotor es el movimiento relativo del rotor en comparación con el campo magnético del estator.

Tipos Constructivos

El motor de jaula de ardilla consta de un rotor constituido por una serie de conductores metálicos (normalmente de aluminio) dispuestos paralelamente unos a otros, y cortocircuitados en sus extremos por unos anillos metálicos, esto es lo que forma la llamada 'jaula de ardilla' por su similitud gráfica con una jaula de ardilla. Esta 'jaula' se rellena de material, normalmente chapa apilada. De esta manera, se consigue un sistema n-fásico de conductores (siendo n el número de
conductores) situado en el interior del campo magnético giratorio creado por el estator, con lo cual se tiene un sistema físico muy eficaz, simple, y muy robusto (básicamente, no requiere mantenimiento).

El motor de rotor bobinado tiene un rotor constituido en vez de por una jaula, por una serie de conductores bobinados sobre él, en una serie de ranuras situadas sobre su superficie. De esta forma se tiene un bobinado en el interior del campo magnético del estator, del mismo número de polos (ha de ser construido con mucho cuidado), y por tanto movimiento. Es mucho más complicado de fabricar y mantener que el de jaula de ardilla, pero permite el acceso al mismo desde el exterior a través de unos anillos que son los que cortocircuitan los bobinados, lo que tiene muchas ventajas, como permitir la utilización de un reóstato de arranque que permite modificar velocidad y par en los arranques.

En cualquiera de los dos casos, el campo magnético giratorio producido por las bobinas inductoras del estator genera una corriente inducida en el rotor, que son las que generan el movimiento.

ELECTRÓNICA DE POTENCIA

Diodos

Un diodo es un dispositivo que permite el paso de la corriente eléctrica en una única dirección. De forma simplificada, la curva característica de un diodo (I-V) consta de dos regiones, por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un circuito cerrado con muy pequeña resistencia eléctrica.

Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest

Formación de la zona de carga espacial

Los diodos pn son uniones de dos materiales semiconductores extrínsecos tipos p y n, por lo que también reciben la denominación de unión pn. Hay que destacar que ninguno de los dos cristales por separado tiene carga eléctrica, ya que en cada cristal, el número de electrones y protones es el mismo, de lo que podemos decir que los dos cristales, tanto el p como el n, son neutros. (Su carga neta es 0).Al unir ambos cristales, se manifiesta una difusión de electrones del cristal n al p (Je).

Al establecerse estas corrientes aparecen cargas fijas en una zona a ambos lados de la unión, zona que recibe diferentes denominaciones como zona de carga espacial, de agotamiento, de deflexión, de vaciado, etc. A medida que progresa el proceso de difusión, la zona de carga espacial va incrementando su anchura profundizando en los cristales a ambos lados de la unión. Sin embargo, la acumulación de iones positivos en la zona n y de iones negativos en la zona p, crea un campo eléctrico (E) que actuará sobre los electrones libres de la zona n con una determinada fuerza de desplazamiento, que se opondrá a la corriente de electrones y terminará deteniéndolos. Este campo eléctrico es equivalente a decir que aparece una diferencia de tensión entre las zonas p y n. Esta diferencia de potencial (V0) es de 0,7 V en el caso del silicio y 0,3 V si los cristales son de germanio.

La anchura de la zona de carga espacial una vez alcanzado el equilibrio, suele ser del orden de 0,5 micras pero cuando uno de los cristales está mucho más dopado que el otro, la zona de carga espacial es mucho mayor.

Al dispositivo así obtenido se le denomina diodo, que en un caso como el descrito, tal que no se encuentra sometido a una diferencia de potencial externa, se dice que no está polarizado. Al extremo p, se le denomina ánodo, representándose por la letra A, mientras que la zona n, el cátodo, se representa por la letra C (o K), donde, A (p) C ó K (n).

Cuando se somete al diodo a una diferencia de tensión externa, se dice que el diodo está polarizado, pudiendo ser la polarización directa o inversa.

SCR

El rectificador controlado de silicio (en inglés SCR: Silicon Controlled Rectifier) es un tipo de tiristor formado por cuatro capas de material semiconductor con estructura PNPN o bien NPNP. El nombre proviene de la unión de Tiratrón (tyratron) y Transistor.

Un SCR posee tres conexiones: ánodo, cátodo y puerta. La puerta es la encargada de controlar el paso de corriente entre el ánodo y el cátodo. Funciona básicamente como un diodo rectificador controlado, permitiendo circular la corriente en un solo sentido. Mientras no se aplique ninguna tensión en la puerta del SCR no se inicia la conducción y en el instante en que se aplique dicha tensión, el tiristor comienza a conducir. Una vez arrancado, podemos anular la tensión de puerta y el tiristor continuará conduciendo hasta que la corriente de carga disminuya por debajo de la corriente de mantenimiento. Trabajando en corriente alterna el SCR se desexcita en cada alternancia o semiciclo.

Cuando se produce una variación brusca de tensión entre ánodo y cátodo de un tiristor, éste puede dispararse y entrar en conducción aún sin corriente de puerta. Por ello se da como característica la tasa máxima de subida de tensión que permite mantener bloqueado el SCR. Este efecto se produce debido al condensador parásito existente entre la puerta y el ánodo.

Los SCR se utilizan en aplicaciones de electrónica de potencia y de control.

Podríamos decir que un SCR funciona como un interruptor electrónico.

IGBT

El transistor bipolar de puerta aislada (IGBT) es un dispositivo electrónico que generalmente se aplica a circuitos de potencia.

Este es un dispositivo para la conmutación en sistemas de alta tensión. La tensión de control de puerta es de unos 15V. Esto ofrece la ventaja de controlar sistemas de potencia aplicando una señal eléctrica de entrada muy débil en la puerta.

El IGBT de la figura es una conexión integrada de un MOSFET y un BJT. El circuito de excitación del IGBT es como el del MOSFET, mientras que las características de conducción son como las del BJT. El IGBT es adecuado para velocidades de conmutación de hasta 20 KHz y ha sustituido al BJT en muchas aplicaciones.



VARIADORES DE FRECUENCIA

Los controladores de frecuencia variable de estado sólido constan de un rectificador que convierte la corriente alterna de la línea de alimentación a corriente directa y de una segunda sección llamada inversor que convierte la corriente directa en una señal de corriente alterna de frecuencia ajustable que alimenta al motor.

Rectificador

La función del rectificador es convertir la señal de voltaje de alimentación de CA a CD y controlar el voltaje al inversor para mantener constante la relación Volts/Hz.

Inversor

El inversor utiliza dispositivos de potencia de estado sólido que son controlados por microprocesador para conmutar el voltaje del bus de CD y producir una señal de CA de frecuencia ajustable que alimenta al motor.

Inversor de seis pasos

Para variar la frecuencia del motor, se ajusta el tiempo de conducción de los SCR’s para cada uno de los seis pasos, modificando el tiempo del ciclo. El voltaje de CD se ajusta para mantener la relación Volts-Hz constante. Cuando se utilizan SCR’s en el inversor, se utilizan circuitos complejos de conmutación que no se muestran en la figura y que incluye la lógica de disparo y componentes adicionales de potencia para apagarlos que constan de capacitores, inductores y SRC’s adicionales. Esta complejidad se reduce cuando se utilizan IGBT’s como interruptores de potencia.

Inversor PWM

El inversor consiste de seis IGBT’s que se encienden y apagan en una secuencia tal que producen un voltaje en forma de pulsos cuadrados que se alimentan al motor. Para variar la frecuencia del motor, el número de pulsos y su ancho se ajustan resultando en un tiempo de ciclo mayor para bajar la velocidad o tiempo de ciclo menor para subir la velocidad. Para cada frecuencia específica hay un número óptimo de pulsos y anchos que producen la menor distorsión armónica en la corriente que se aproxime a la señal senoidal.

El cambio de voltaje requerido para mantener la relación Volts-Hz constante conforme varía la frecuencia, se realiza por medio del microprocesador de propósito dedicado que controla el ancho de los pulsos y los demás parámetros para conseguir un adecuado funcionamiento.

La distorsión armónica afecta los aislamientos del motor, incrementa su ruido audible y eleva el calentamiento entre un 5% y un15% dependiendo del diseño del fabricante y velocidad de operación.

Control voltaje frecuencia

La velocidad del motor a voltaje, frecuencia y carga nominal se conoce como velocidad base, cuando se varía la frecuencia de alimentación al motor por encima o por debajo de 60 Hz, el motor opera por encima o por debajo de la velocidad base.

Los motores de inducción producen el torque debido al flujo en su campo rotatorio. Cuando se opera por debajo de su velocidad base el torque se lleva a cabo manteniendo constante la relación voltaje / frecuencia que se aplica al motor.

La relación para motores de 460V y 230V es:

Voltaje Frecuencia Volts / Hz
460 60 7.6
230 60 3.8

Si la relación Volts/Hz se incrementa al bajar la frecuencia para reducir la velocidad del motor, la corriente se incrementará llegando a ser excesiva. Si por el contrario la relación Volts/Hz se reduce al subir la frecuencia para elevar la velocidad del motor, la capacidad de torque se verá reducida.

Cuando se opera por arriba de la velocidad base, la relación Volts/Hz se reduce ya que se aplica un voltaje constante al motor, que generalmente es el voltaje nominal, por lo que las capacidades de torque se reducen. A frecuencias de alimentación del motor de 30 Hz y menores, la relación Volts/Hz no siempre se mantiene constante, ya que dependiendo del tipo de carga, el voltaje puede incrementarse para elevar la relación Volts/Hz para que el motor produzca un torque mayor, especialmente a velocidad cero. Este ajuste es llamado elevación de voltaje (Voltage Boost).

Cuando el motor opera con cargas ligeras se puede reducir la relación Volts/Hz para minimizar la corriente del motor, y debido a que se aplica un voltaje menor, se consigue reducir la corriente de magnetización y consecuentemente producir un torque menor que aún sea tolerable.

Control por de Tipo Flujo Vectorial

Los VFD de C.A. han estado limitados a aplicaciones de par normal mientras que las aplicaciones de alto par y baja velocidad han sido el dominio de los motores de CD. Esta situación ha cambiado por la introducción de una nueva generación de la tecnología PWM, el variador de flujo vectorial.

El método de control de par usado en el VDF de flujo vectorial es similar al usado en los de CD, que incluyen un amplio rango de velocidades con una rápida respuesta. Este variador tiene la misma sección de potencia que los PWM, pero usa un sofisticado control de lazo cerrado del motor al microprocesador del variador de frecuencia. La posición y velocidad del rotor es monitoreada en tiempo real a través de un codificador digital que determina y controla la velocidad, par y potencia del motor.

Al controlar la sección de inversión en respuesta a las condiciones actuales de la carga en tiempo real, se obtiene un control excelente del par, velocidad y potencia, así como una rápida respuesta a los cambios de carga y se consigue proporcionar el 100 % de par a velocidad 0. La gran mayoría de fabricantes tienen VDF con tecnología enfocada al control de par más que al control de velocidad. El objetivo es controlar el par del motor en lugar de la velocidad y por lo tanto tienen respuestas más rápidas y precisas a las variaciones del par demandado por la carga.

Para lograr esto, el variador “explora” al motor haciendo un auto-reconocimiento (autotuning), en el que le inyecta corriente y voltaje para determinar su comportamiento, creando un algoritmo o modelo de sus características de funcionamiento y controlarlo de la manera más adecuada.

El reconocimiento al motor se puede realizar con carga y sin carga y al concluir se guarda en la memoria del VDF un modelo matemático del motor con el que se va a trabajar quedando respaldado incluso cuando se desconecta totalmente. Durante la operación, el modelo recibe la información de la corriente que el motor demanda en sus 3 fases, los valores de voltaje del bus de C.D. y el estado de los transistores de potencia (IGBT). Con estos datos se calcula el flujo en el estator, el par, la frecuencia y la velocidad de cada ciclo.

El modelo estima la resistencia en el estator, obteniendo este valor mediante la comparación de los datos obtenidos de la identificación inicial y en la subsecuente operación del mismo.

Este tipo de VFD es ideal para aplicaciones de una complejidad mayor que generalmente se controlan con motores de CD como extrusoras, grúas, elevadores, máquinas de papel, y molinos entre otras.

En todas las aplicaciones de VDF anteriormente descritas hay que tener muy presentes el calentamiento que pueda llegar a sufrir el motor al disminuir la velocidad del ventilador de enfriamiento acoplado al mismo en la parte posterior.

Si el motor va a trabajar en rangos de velocidad de 0 a 30 Hz durante periodos prolongados, se recomienda instalar ventilación extra a la del motor para asegurar el enfriamiento adecuado.

Tipos de Cargas

La primera consideración que se debe de hacer al aplicar un VFD es determinar el tipo de carga y sus características, debiendo de conocer los requerimientos de Par y Velocidad.

Las cargas se pueden agrupar en las siguientes categorías:
• Cargas de Par Variable
• Cargas de Par Constante
• Cargas de Potencia Constante
• Cargas de Impacto

Cargas de Par Variable

Las cargas en las que el Par se reduce cuando operan por debajo de la velocidad base y se incrementa al operar por encima de dicha velocidad base se clasifican como Cargas de Par Variable.

En muchas de estas cargas el par se reduce con el cuadrado de la velocidad, siendo las bombas centrífugas y cierto tipo de ventiladores y sopladores las cargas más representativas.

Comportamiento de Cargas de Par Variable

Cargas de Par Constante

Son cargas en las que el Par no es función de la velocidad sino que permanece constante, mientras que la potencia varía linealmente con la velocidad. Las aplicaciones típicas son:
• Accionamientos de tracción
• Bandas transportadoras
• Bombas de desplazamiento positivo
• Grúas y malacates

Comportamiento de Cargas de Par Constante

Cargas de Potencia Constante

En las cargas de potencia constante, cuando se opera por encima de la velocidad base, el Par requerido decrece, mientras que la potencia se mantiene casi constante. Las aplicaciones típicas son:
• Molinos
• Embobinadoras

Comportamiento de Cargas de Potencia Constante

Cargas de Impacto

En las cargas de impacto tales las máquinas que cuentan con embragues de operación cíclica o las prensas de estampado de lámina, el Par es intermitente y no es función de la velocidad. En el caso de las prensas se requiere que la combinación del motor y el VFD produzcan un par suficiente de aceleración para regresar el volante de inercia a la velocidad requerida antes de que inicie el siguiente ciclo.
Comportamiento de Cargas de Impacto

2 comentarios:

  1. Esta Información esta abierta a discusiones, cualquier duda puede expresarla por este medio.

    ResponderEliminar
  2. hoye como puedo solucionar una falla de sobretencion en el buss despues de unos dias me vuela los capasitores es un micromaster 430

    ResponderEliminar